AWS APN Training Partner

MLOps Engineering on AWS Training

AWS APN Training Partner

This course builds upon and extends the DevOps practice prevalent in software development to build, train, and deploy machine learning (ML) models. The course stresses the importance of data, model, and code to successful ML deployments. It will demonstrate the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course will also discuss the use of tools and processes to monitor and take action when the model prediction in production starts to drift from agreed-upon key performance indicators.
The instructor will encourage the participants in this course to build an MLOps action plan for their organization through daily reflection of lesson and lab content, and through conversations with peers and instructors. 

Course Contents

  • Module 0: Welcome
  • Module 1: Introduction to MLOps
  • Module 2: MLOps Development
  • Module 3: MLOps Deployment
  • Module 4: Model Monitoring and Operations
  • Module 5: Wrap-up

You have access to the labs for another 14 days after the course. This way you can repeat exercises or deepen them individually.

E-Book Symbol You will receive the original course documentation by Amazon Web Services in English language as an e-book.

Request in-house training now

Target Group

This course is intended for any one of the following roles with responsibility for productionizing machine 
learning models in the AWS Cloud:

  • DevOps Engineers
  • ML Engineers
  • Developers/operations with responsibility for operationalizing ML models

Knowledge Prerequisites

Required:
AWS Technical Essentials
DevOps Engineering on AWS
Practical Data Science with Amazon SageMaker


Recommended:
The Elements of Data Science 
Machine Learning Terminology and Process 

 

Please note our overview AWS Trainings!

Module 0: Welcome
Course introduction
Module 1: Introduction to MLOps
Machine learning operations
Goals of MLOps
Communication
From DevOps to MLOps
ML workflow
Scope
MLOps view of ML workflow
MLOps cases
Module 2: MLOps Development
Intro to build, train, and evaluate machine learning models
MLOps security
Automating
Apache Airflow
Kubernetes integration for MLOps
Amazon SageMaker for MLOps
Lab: Bring your own algorithm to an MLOps pipeline
Demonstration: Amazon SageMaker
Intro to build, train, and evaluate machine learning models
Lab: Code and serve your ML model with AWS CodeBuild
Activity: MLOps Action Plan Workbook
Module 3: MLOps Deployment
Introduction to deployment operations
Model packaging
Inference
Lab: Deploy your model to production
SageMaker production variants
Deployment strategies
Deploying to the edge
Lab: Conduct A/B testing
Activity: MLOps Action Plan Workbook
Module 4: Model Monitoring and Operations
Lab: Troubleshoot your pipeline
The importance of monitoring
Monitoring by design
Lab: Monitor your ML model
Human-in-the-loop
Amazon SageMaker Model Monitor
Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
Solving the Problem(s)
Activity: MLOps Action Plan Workbook
Module 5: Wrap-up
Course review
Activity: MLOps Action Plan Workbook
Wrap-up
 

Classroom training

Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!

Online training

You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.

Tailor-made courses

You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.
Request in-house training now
PDF SymbolYou can find the complete description of this course with dates and prices ready for download at as PDF.

This course builds upon and extends the DevOps practice prevalent in software development to build, train, and deploy machine learning (ML) models. The course stresses the importance of data, model, and code to successful ML deployments. It will demonstrate the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course will also discuss the use of tools and processes to monitor and take action when the model prediction in production starts to drift from agreed-upon key performance indicators.
The instructor will encourage the participants in this course to build an MLOps action plan for their organization through daily reflection of lesson and lab content, and through conversations with peers and instructors. 

Course Contents

  • Module 0: Welcome
  • Module 1: Introduction to MLOps
  • Module 2: MLOps Development
  • Module 3: MLOps Deployment
  • Module 4: Model Monitoring and Operations
  • Module 5: Wrap-up

You have access to the labs for another 14 days after the course. This way you can repeat exercises or deepen them individually.

E-Book Symbol You will receive the original course documentation by Amazon Web Services in English language as an e-book.

Request in-house training now

Target Group

This course is intended for any one of the following roles with responsibility for productionizing machine 
learning models in the AWS Cloud:

  • DevOps Engineers
  • ML Engineers
  • Developers/operations with responsibility for operationalizing ML models

Knowledge Prerequisites

Required:
AWS Technical Essentials
DevOps Engineering on AWS
Practical Data Science with Amazon SageMaker


Recommended:
The Elements of Data Science 
Machine Learning Terminology and Process 

 

Please note our overview AWS Trainings!

Module 0: Welcome
Course introduction
Module 1: Introduction to MLOps
Machine learning operations
Goals of MLOps
Communication
From DevOps to MLOps
ML workflow
Scope
MLOps view of ML workflow
MLOps cases
Module 2: MLOps Development
Intro to build, train, and evaluate machine learning models
MLOps security
Automating
Apache Airflow
Kubernetes integration for MLOps
Amazon SageMaker for MLOps
Lab: Bring your own algorithm to an MLOps pipeline
Demonstration: Amazon SageMaker
Intro to build, train, and evaluate machine learning models
Lab: Code and serve your ML model with AWS CodeBuild
Activity: MLOps Action Plan Workbook
Module 3: MLOps Deployment
Introduction to deployment operations
Model packaging
Inference
Lab: Deploy your model to production
SageMaker production variants
Deployment strategies
Deploying to the edge
Lab: Conduct A/B testing
Activity: MLOps Action Plan Workbook
Module 4: Model Monitoring and Operations
Lab: Troubleshoot your pipeline
The importance of monitoring
Monitoring by design
Lab: Monitor your ML model
Human-in-the-loop
Amazon SageMaker Model Monitor
Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
Solving the Problem(s)
Activity: MLOps Action Plan Workbook
Module 5: Wrap-up
Course review
Activity: MLOps Action Plan Workbook
Wrap-up
 

Classroom training

Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!

Online training

You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.

Tailor-made courses

You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.
Request in-house training now

PDF SymbolYou can find the complete description of this course with dates and prices ready for download at as PDF.