AWS APN Training Partner

The Machine Learning Pipeline on AWS

AWS APN Training Partner

Course Contents

  • Module 0: Introduction
  • Module 1: Introduction to Machine Learning and the ML Pipeline
  • Module 2: Introduction to Amazon SageMaker
  • Module 3: Problem Formulation
  • Module 4: Preprocessing
  • Module 5: Model Training
  • Module 6: Model Evaluation
  • Module 7: Feature Engineering and Model Tuning
  • Module 8: Deployment

You have access to the labs for another 14 days after the course. This way you can repeat exercises or deepen them individually.

Request in-house training now

Target Group

This course is intended for:

  • Developers
  • Solutions Architects
  • Data Engineers
  • Anyone with little to no experience with ML and wants to learn about the ML pipeline using

Knowledge Prerequisites

We recommend that attendees of this course have:

  • Basic knowledge of Python programming language
  • Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
  • Basic experience working in a Jupyter notebook environment
Module 0: Introduction
Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
Overview of machine learning, including use cases, types of machine learning, and key
concepts
Overview of the ML pipeline
Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
Introduction to Amazon SageMaker
Demo: Amazon SageMaker and Jupyter notebooks
Hands-on: Amazon SageMaker and Jupyter notebooks
Module 3: Problem Formulation
Overview of problem formulation and deciding if ML is the right solution
Converting a business problem into an ML problem
Demo: Amazon SageMaker Ground Truth
Hands-on: Amazon SageMaker Ground Truth
Practice problem formulation
Formulate problems for projects
Checkpoint 1 and Answer Review
Module 4: Preprocessing
Overview of data collection and integration, and techniques for data preprocessing and
visualization
Practice preprocessing
Preprocess project data
Class discussion about projects
Checkpoint 2 and Answer Review
Module 5: Model Training
Choosing the right algorithm
Formatting and splitting your data for training
Loss functions and gradient descent for improving your model
Demo: Create a training job in Amazon SageMaker
Module 6: Model Evaluation
How to evaluate classification models
How to evaluate regression models
Practice model training and evaluation
Train and evaluate project models
Initial project presentations
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning
Feature extraction, selection, creation, and transformation
Hyperparameter tuning
Demo: SageMaker hyperparameter optimization
Practice feature engineering and model tuning
Apply feature engineering and model tuning to projects
Final project presentations
Module 8: Deployment
How to deploy, inference, and monitor your model on Amazon SageMaker
Deploying ML at the edge
Demo: Creating an Amazon SageMaker endpoint
Post-assessment
Course wrap-up

Classroom training

Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!

Online training

You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.

Tailor-made courses

You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.
Request in-house training now
PDF SymbolYou can find the complete description of this course with dates and prices ready for download at as PDF.

Course Contents

  • Module 0: Introduction
  • Module 1: Introduction to Machine Learning and the ML Pipeline
  • Module 2: Introduction to Amazon SageMaker
  • Module 3: Problem Formulation
  • Module 4: Preprocessing
  • Module 5: Model Training
  • Module 6: Model Evaluation
  • Module 7: Feature Engineering and Model Tuning
  • Module 8: Deployment

You have access to the labs for another 14 days after the course. This way you can repeat exercises or deepen them individually.

Request in-house training now

Target Group

This course is intended for:

  • Developers
  • Solutions Architects
  • Data Engineers
  • Anyone with little to no experience with ML and wants to learn about the ML pipeline using

Knowledge Prerequisites

We recommend that attendees of this course have:

  • Basic knowledge of Python programming language
  • Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
  • Basic experience working in a Jupyter notebook environment

Module 0: Introduction
Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
Overview of machine learning, including use cases, types of machine learning, and key
concepts
Overview of the ML pipeline
Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
Introduction to Amazon SageMaker
Demo: Amazon SageMaker and Jupyter notebooks
Hands-on: Amazon SageMaker and Jupyter notebooks
Module 3: Problem Formulation
Overview of problem formulation and deciding if ML is the right solution
Converting a business problem into an ML problem
Demo: Amazon SageMaker Ground Truth
Hands-on: Amazon SageMaker Ground Truth
Practice problem formulation
Formulate problems for projects
Checkpoint 1 and Answer Review
Module 4: Preprocessing
Overview of data collection and integration, and techniques for data preprocessing and
visualization
Practice preprocessing
Preprocess project data
Class discussion about projects
Checkpoint 2 and Answer Review
Module 5: Model Training
Choosing the right algorithm
Formatting and splitting your data for training
Loss functions and gradient descent for improving your model
Demo: Create a training job in Amazon SageMaker
Module 6: Model Evaluation
How to evaluate classification models
How to evaluate regression models
Practice model training and evaluation
Train and evaluate project models
Initial project presentations
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning
Feature extraction, selection, creation, and transformation
Hyperparameter tuning
Demo: SageMaker hyperparameter optimization
Practice feature engineering and model tuning
Apply feature engineering and model tuning to projects
Final project presentations
Module 8: Deployment
How to deploy, inference, and monitor your model on Amazon SageMaker
Deploying ML at the edge
Demo: Creating an Amazon SageMaker endpoint
Post-assessment
Course wrap-up

Classroom training

Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!

Online training

You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.

Tailor-made courses

You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.
Request in-house training now

PDF SymbolYou can find the complete description of this course with dates and prices ready for download at as PDF.