-
The networks are changing. Modern mobile technologies and industrial production place high demands on synchronization in packet networks. Synchronous Ethernet and the Precision Time Protocol (PTP) are two very different technologies, but which approach is better? From a carrier perspective, a combination of the two makes sense. The concept is extended by Time Sensitive Networking (TSN). It offers an extensive catalog of solutions for the highest QoS requirements.
-
Course Contents
-
- Clocking in networks
- Frequency and phase synchrony
- IEEE 1588v2 PTP – Precise Time Protocol
- Clock types: Master, Boundary Clock, Transparent Clock, Ordinary Clock
- Time allocation protocol, Message Types
- Security at PTP
- Synchronous Ethernet, ITU-T G.8262
- Rules of timing
- Time Protection at SyncE
- Time Sensitive Networking (TSN)
- Stream Reservation Protocol
- Path Control and Redundancy
The detailed digital documentation package, consisting of an e-book and PDF, is included in the price of the course.
Premium Course Documents
In addition to the digital documentation package, the exclusive Premium Print Package is also available to you.
- High-quality color prints of the ExperTeach documentation
- Exclusive folder in an elegant design
- Document pouch in backpack shape
- Elegant LAMY ballpoint pen
- Practical notepad
The Premium Print Package can be added during the ordering process for € 150,- plus VAT (only for classroom participation). -
Target Group
-
This course is aimed at employees of carriers, enterprise network operators and Internet service providers. Users of networks with high data volumes are also specifically addressed by providing an overview of the market situation and development trends.
-
Knowledge Prerequisites
-
A good knowledge of the Synchronous Digital Hierarchy - Networks, Alarms, Protection facilitates understanding. Basic knowledge of optical signal transmission is also helpful.
1 | Taktung – Warum? |
1.1 | Anforderungen – Ein paar Takte zur Taktung |
1.2 | Anforderungen |
1.3 | Ethernet und Taktung bisher |
1.3.1 | SDH als Referenz |
2 | Was ist Synchronität? |
2.1 | Taktgenauigkeit |
2.2 | Taktquellen |
2.3 | Taktverhalten – „As time goes by.“ |
3 | Taktvergabe – „Wem die Stunde schlägt...“ |
3.1 | Regeln – Wer taktet wen? |
3.1.1 | Takt-Hierarchien |
3.1.2 | Takt und Redundanz |
3.2 | Aufbau einer PRC |
4 | Synchronous Ethernet, SyncE, G. 8262, G. 8264 |
4.1 | Prinzip |
4.1.1 | TDM über Ethernet |
4.1.2 | Ethernet Equipment Clock (EEC), G. 8262 |
4.1.3 | Synchronization Supply Unit (SSU) |
4.1.4 | Synchronization Reference Chain, G. 803 – Aufbau |
4.1.5 | Synchronization Reference Chain, G. 803 – Länge |
4.2 | Taktverteilung |
4.2.1 | Aufbau eines SyncE Netzelementes, G. 8262, |
4.2.2 | ESMC – Ethernet Synchronization Messaging Channel, G. 8264 |
4.3 | SyncE und Mobilfunk |
4.3.1 | Timing Paths der Frequenzverteilung |
4.3.2 | SyncE über WDM |
4.4 | SyncE und Metro Ethernet Forum |
4.5 | Hybride Netze: SyncE und IEEE 1588v2 |
4.6 | PTSF – Packet Timing Signal Failure |
4.7 | Protection bei Taktung |
4.7.1 | Ausfall |
4.7.2 | Protection |
5 | Taktung nach IEEE 1588v2, G.8265.1 |
5.1 | Taktung nach IEEE 1588 |
5.1.1 | Uhren und Aufgaben |
5.1.2 | Uhren und Netzdesign |
5.2 | Abläufe im Überblick |
5.3 | PTP Telecom Profile, G.8265 |
5.3.1 | Korrektur des Offset |
5.3.2 | Messen des Delay |
5.3.3 | Delay-Request-Response, Teil 1 |
5.3.4 | Delay-Request-Response, Teil 2 |
5.3.5 | Peer-Delay |
5.3.6 | Transparent Clock Peer-to-Peer |
5.3.7 | Transparent Clock End-to-End |
5.3.8 | Boundary Clock (BC) |
5.4 | PTP im Detail |
5.5 | Takt-Topologien |
5.5.1 | Hierarchische Topologie |
5.5.2 | Lineare Topologie |
5.5.3 | Multiple Connected Topology |
5.5.4 | Quality Level für PTP, G.781 |
5.6 | PTP Domains |
5.7 | PTP Monitoring – Ein Beispiel |
5.8 | Security und Synchronität |
5.8.1 | Gefahren für die Slaves |
5.8.2 | Gefahren für den Master |
5.8.3 | Gefahren für Boundary und Transparent Clocks |
5.8.4 | MACsec – Verschlüsseln auf Layer 2 |
6 | 5G Mobilfunk und Synchronisation |
6.1 | Einblick in den 5G Mobilfunk |
6.1.1 | 5G New Radio im Überblick |
6.1.2 | Der Aufbau eines 5G Netzes |
6.1.3 | OFDM – Multi Carrier Transmission |
6.1.4 | Skalierbare Bandbreiten |
6.1.5 | Anzahl der Resource Blocks (RB) |
6.1.6 | 5G Timing & Latenz-Zeiten |
6.1.7 | Network Slicing |
6.1.8 | Vom massive MIMO zum Beamforming |
6.1.9 | FDD und TDD im Vergleich |
6.2 | TDD und Zeitsynchronität |
6.2.1 | Coordinated Multi Point (CoMP) und Sync. |
6.2.2 | CoMP - Coordinated Multi Point im Campus |
6.2.3 | Coordinated Scheduling/Coordinated Beamforming |
6.2.4 | Joint Processing |
6.3 | Störungen: Inter-Cell-Interference |
6.3.1 | Slot Interference |
6.3.2 | Slot Interference zwischen DL und UL |
6.3.3 | UL Interference messen |
6.4 | Synchronisation im 5G Radio Access Network (RAN) |
6.4.1 | G.8271.1: Full Timing Support (FTS) |
6.4.2 | Assisted Partial Timing Support (APTS) |
6.5 | Synchronisation und Protection |
6.5.1 | Einfaches Konzept |
6.5.2 | Zeitoptimiert |
6.5.3 | Protection: Konzept 2 |
6.5.4 | Ausfall des Masters – wie erkennen? |
6.5.5 | Was ist wenn...? |
6.5.6 | Protection: PTP + SyncE |
7 | Time Sensitive Networking (TSN) |
7.1 | Time Sensitive Networking – IEEE 802.1 TSN |
7.1.1 | TSN für (teil)autonomes Fahren |
7.1.2 | Überblick wichtiger Standards |
7.1.3 | TSN Basiswissen |
7.1.4 | Ein Beispiel |
7.2 | Basis: Precise Synchronization IEEE 802.1AS |
7.2.1 | Zeit und Präzision |
7.2.2 | Clock Synchronization Services |
7.2.3 | Fehlerfall: Switch und Endgerät |
7.2.4 | Redundante Synchronität, 802.1ASbt |
7.2.5 | Transmission Order |
7.3 | Traffic Types des Industrial Internet Consortium (IIC) |
7.3.1 | Isochronous (Traffic Type I) |
7.3.2 | Cyclic (Traffic Type II) |
7.3.3 | Alarms & Events (Traffic Type III) |
7.3.4 | Configuration & Diagnostics (Traffic Type IV) |
7.3.5 | Network Control (Traffic Type V) |
7.3.6 | Best Effort (Traffic Type VI) und weitere |
7.4 | TSN Netze |
7.5 | Forwarding und Queueing |
7.5.1 | Cyclic Queueing and Forwarding (CQF) |
7.5.2 | Priority and Weighted Queueing |
7.5.3 | Credit Based Shaping (802.1Qav) |
7.5.4 | Preemption und Interspersing Express Traffic 802.3br |
7.5.5 | Frame Formate im Überblick |
7.5.6 | Time-Aware Shaper, IEEE 802.1Qbv |
7.5.7 | Guard Band |
7.5.8 | Zeitlich gesteuerte Gates, 802.1Qbv |
7.5.9 | Per Stream Filtering and Policing (PSFP) |
7.5.10 | Input Gates, P802.1Qci |
7.5.11 | Admission Control, IEEE 802.1Qat |
7.5.12 | SRP: Talker und Listener |
7.5.13 | Listener und Domain |
7.5.14 | TSN Streams identifizieren |
7.5.15 | Stream Reservation Protocol (SRP), 802.1Qcc |
7.6 | Path Control and Redundancy, 802.1Qca |
7.6.1 | IS-IS |
7.6.2 | Die Basis: Provider Backbone Bridging – 802.1ah |
7.6.3 | IS-IS Routing im Ethernet |
7.6.4 | Shortest Path Bridging, 802.1aq |
7.6.5 | Path Control & Reservation (PCR), RFC 7813 |
7.6.6 | Path Computation |
7.6.7 | Path Computation centralized |
7.7 | Seamless Redundancy, IEEE 802.1CB |
7.7.1 | Parallel Redundancy Protocol, IEC 62439-3 |
7.7.2 | PRP Netzelement |
7.8 | TSN Systems |
8 | Fehler erkennen |
8.1 | Fehlerquellen |
8.1.1 | Jitter und Wander |
8.1.2 | Jitter und Wander im Vergleich |
8.2 | Messtechnik |
8.2.1 | Jitter |
8.3 | Jitter – Generation, Transfer und Tolerance |
8.3.1 | Jitter Generation: BERT scan und Bathtub, IEEE 802.3ae Annex 48B.3l |
8.3.2 | Jitter Tolerance: Stressed Receiver Conformance Test, IEEE 802.3ae |
-
Classroom training
- Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!
-
Hybrid training
- Hybrid training means that online participants can additionally attend a classroom course. The dynamics of a real seminar are maintained, and the online participants are able to benefit from that. Online participants of a hybrid course use a collaboration platform, such as WebEx Training Center or Saba Meeting. To do this, a PC with browser and Internet access is required, as well as a headset and ideally a Web cam. In the seminar room, we use specially developed and customized audio- and video-technologies. This makes sure that the communication between all persons involved works in a convenient and fault-free way.
-
Online training
- You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.
-
Tailor-made courses
-
You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.

-
The networks are changing. Modern mobile technologies and industrial production place high demands on synchronization in packet networks. Synchronous Ethernet and the Precision Time Protocol (PTP) are two very different technologies, but which approach is better? From a carrier perspective, a combination of the two makes sense. The concept is extended by Time Sensitive Networking (TSN). It offers an extensive catalog of solutions for the highest QoS requirements.
-
Course Contents
-
- Clocking in networks
- Frequency and phase synchrony
- IEEE 1588v2 PTP – Precise Time Protocol
- Clock types: Master, Boundary Clock, Transparent Clock, Ordinary Clock
- Time allocation protocol, Message Types
- Security at PTP
- Synchronous Ethernet, ITU-T G.8262
- Rules of timing
- Time Protection at SyncE
- Time Sensitive Networking (TSN)
- Stream Reservation Protocol
- Path Control and Redundancy
The detailed digital documentation package, consisting of an e-book and PDF, is included in the price of the course.
Premium Course Documents
In addition to the digital documentation package, the exclusive Premium Print Package is also available to you.
- High-quality color prints of the ExperTeach documentation
- Exclusive folder in an elegant design
- Document pouch in backpack shape
- Elegant LAMY ballpoint pen
- Practical notepad
The Premium Print Package can be added during the ordering process for € 150,- plus VAT (only for classroom participation). -
Target Group
-
This course is aimed at employees of carriers, enterprise network operators and Internet service providers. Users of networks with high data volumes are also specifically addressed by providing an overview of the market situation and development trends.
-
Knowledge Prerequisites
-
A good knowledge of the Synchronous Digital Hierarchy - Networks, Alarms, Protection facilitates understanding. Basic knowledge of optical signal transmission is also helpful.
1 | Taktung – Warum? |
1.1 | Anforderungen – Ein paar Takte zur Taktung |
1.2 | Anforderungen |
1.3 | Ethernet und Taktung bisher |
1.3.1 | SDH als Referenz |
2 | Was ist Synchronität? |
2.1 | Taktgenauigkeit |
2.2 | Taktquellen |
2.3 | Taktverhalten – „As time goes by.“ |
3 | Taktvergabe – „Wem die Stunde schlägt...“ |
3.1 | Regeln – Wer taktet wen? |
3.1.1 | Takt-Hierarchien |
3.1.2 | Takt und Redundanz |
3.2 | Aufbau einer PRC |
4 | Synchronous Ethernet, SyncE, G. 8262, G. 8264 |
4.1 | Prinzip |
4.1.1 | TDM über Ethernet |
4.1.2 | Ethernet Equipment Clock (EEC), G. 8262 |
4.1.3 | Synchronization Supply Unit (SSU) |
4.1.4 | Synchronization Reference Chain, G. 803 – Aufbau |
4.1.5 | Synchronization Reference Chain, G. 803 – Länge |
4.2 | Taktverteilung |
4.2.1 | Aufbau eines SyncE Netzelementes, G. 8262, |
4.2.2 | ESMC – Ethernet Synchronization Messaging Channel, G. 8264 |
4.3 | SyncE und Mobilfunk |
4.3.1 | Timing Paths der Frequenzverteilung |
4.3.2 | SyncE über WDM |
4.4 | SyncE und Metro Ethernet Forum |
4.5 | Hybride Netze: SyncE und IEEE 1588v2 |
4.6 | PTSF – Packet Timing Signal Failure |
4.7 | Protection bei Taktung |
4.7.1 | Ausfall |
4.7.2 | Protection |
5 | Taktung nach IEEE 1588v2, G.8265.1 |
5.1 | Taktung nach IEEE 1588 |
5.1.1 | Uhren und Aufgaben |
5.1.2 | Uhren und Netzdesign |
5.2 | Abläufe im Überblick |
5.3 | PTP Telecom Profile, G.8265 |
5.3.1 | Korrektur des Offset |
5.3.2 | Messen des Delay |
5.3.3 | Delay-Request-Response, Teil 1 |
5.3.4 | Delay-Request-Response, Teil 2 |
5.3.5 | Peer-Delay |
5.3.6 | Transparent Clock Peer-to-Peer |
5.3.7 | Transparent Clock End-to-End |
5.3.8 | Boundary Clock (BC) |
5.4 | PTP im Detail |
5.5 | Takt-Topologien |
5.5.1 | Hierarchische Topologie |
5.5.2 | Lineare Topologie |
5.5.3 | Multiple Connected Topology |
5.5.4 | Quality Level für PTP, G.781 |
5.6 | PTP Domains |
5.7 | PTP Monitoring – Ein Beispiel |
5.8 | Security und Synchronität |
5.8.1 | Gefahren für die Slaves |
5.8.2 | Gefahren für den Master |
5.8.3 | Gefahren für Boundary und Transparent Clocks |
5.8.4 | MACsec – Verschlüsseln auf Layer 2 |
6 | 5G Mobilfunk und Synchronisation |
6.1 | Einblick in den 5G Mobilfunk |
6.1.1 | 5G New Radio im Überblick |
6.1.2 | Der Aufbau eines 5G Netzes |
6.1.3 | OFDM – Multi Carrier Transmission |
6.1.4 | Skalierbare Bandbreiten |
6.1.5 | Anzahl der Resource Blocks (RB) |
6.1.6 | 5G Timing & Latenz-Zeiten |
6.1.7 | Network Slicing |
6.1.8 | Vom massive MIMO zum Beamforming |
6.1.9 | FDD und TDD im Vergleich |
6.2 | TDD und Zeitsynchronität |
6.2.1 | Coordinated Multi Point (CoMP) und Sync. |
6.2.2 | CoMP - Coordinated Multi Point im Campus |
6.2.3 | Coordinated Scheduling/Coordinated Beamforming |
6.2.4 | Joint Processing |
6.3 | Störungen: Inter-Cell-Interference |
6.3.1 | Slot Interference |
6.3.2 | Slot Interference zwischen DL und UL |
6.3.3 | UL Interference messen |
6.4 | Synchronisation im 5G Radio Access Network (RAN) |
6.4.1 | G.8271.1: Full Timing Support (FTS) |
6.4.2 | Assisted Partial Timing Support (APTS) |
6.5 | Synchronisation und Protection |
6.5.1 | Einfaches Konzept |
6.5.2 | Zeitoptimiert |
6.5.3 | Protection: Konzept 2 |
6.5.4 | Ausfall des Masters – wie erkennen? |
6.5.5 | Was ist wenn...? |
6.5.6 | Protection: PTP + SyncE |
7 | Time Sensitive Networking (TSN) |
7.1 | Time Sensitive Networking – IEEE 802.1 TSN |
7.1.1 | TSN für (teil)autonomes Fahren |
7.1.2 | Überblick wichtiger Standards |
7.1.3 | TSN Basiswissen |
7.1.4 | Ein Beispiel |
7.2 | Basis: Precise Synchronization IEEE 802.1AS |
7.2.1 | Zeit und Präzision |
7.2.2 | Clock Synchronization Services |
7.2.3 | Fehlerfall: Switch und Endgerät |
7.2.4 | Redundante Synchronität, 802.1ASbt |
7.2.5 | Transmission Order |
7.3 | Traffic Types des Industrial Internet Consortium (IIC) |
7.3.1 | Isochronous (Traffic Type I) |
7.3.2 | Cyclic (Traffic Type II) |
7.3.3 | Alarms & Events (Traffic Type III) |
7.3.4 | Configuration & Diagnostics (Traffic Type IV) |
7.3.5 | Network Control (Traffic Type V) |
7.3.6 | Best Effort (Traffic Type VI) und weitere |
7.4 | TSN Netze |
7.5 | Forwarding und Queueing |
7.5.1 | Cyclic Queueing and Forwarding (CQF) |
7.5.2 | Priority and Weighted Queueing |
7.5.3 | Credit Based Shaping (802.1Qav) |
7.5.4 | Preemption und Interspersing Express Traffic 802.3br |
7.5.5 | Frame Formate im Überblick |
7.5.6 | Time-Aware Shaper, IEEE 802.1Qbv |
7.5.7 | Guard Band |
7.5.8 | Zeitlich gesteuerte Gates, 802.1Qbv |
7.5.9 | Per Stream Filtering and Policing (PSFP) |
7.5.10 | Input Gates, P802.1Qci |
7.5.11 | Admission Control, IEEE 802.1Qat |
7.5.12 | SRP: Talker und Listener |
7.5.13 | Listener und Domain |
7.5.14 | TSN Streams identifizieren |
7.5.15 | Stream Reservation Protocol (SRP), 802.1Qcc |
7.6 | Path Control and Redundancy, 802.1Qca |
7.6.1 | IS-IS |
7.6.2 | Die Basis: Provider Backbone Bridging – 802.1ah |
7.6.3 | IS-IS Routing im Ethernet |
7.6.4 | Shortest Path Bridging, 802.1aq |
7.6.5 | Path Control & Reservation (PCR), RFC 7813 |
7.6.6 | Path Computation |
7.6.7 | Path Computation centralized |
7.7 | Seamless Redundancy, IEEE 802.1CB |
7.7.1 | Parallel Redundancy Protocol, IEC 62439-3 |
7.7.2 | PRP Netzelement |
7.8 | TSN Systems |
8 | Fehler erkennen |
8.1 | Fehlerquellen |
8.1.1 | Jitter und Wander |
8.1.2 | Jitter und Wander im Vergleich |
8.2 | Messtechnik |
8.2.1 | Jitter |
8.3 | Jitter – Generation, Transfer und Tolerance |
8.3.1 | Jitter Generation: BERT scan und Bathtub, IEEE 802.3ae Annex 48B.3l |
8.3.2 | Jitter Tolerance: Stressed Receiver Conformance Test, IEEE 802.3ae |
-
Classroom training
- Do you prefer the classic training method? A course in one of our Training Centers, with a competent trainer and the direct exchange between all course participants? Then you should book one of our classroom training dates!
-
Hybrid training
- Hybrid training means that online participants can additionally attend a classroom course. The dynamics of a real seminar are maintained, and the online participants are able to benefit from that. Online participants of a hybrid course use a collaboration platform, such as WebEx Training Center or Saba Meeting. To do this, a PC with browser and Internet access is required, as well as a headset and ideally a Web cam. In the seminar room, we use specially developed and customized audio- and video-technologies. This makes sure that the communication between all persons involved works in a convenient and fault-free way.
-
Online training
- You wish to attend a course in online mode? We offer you online course dates for this course topic. To attend these seminars, you need to have a PC with Internet access (minimum data rate 1Mbps), a headset when working via VoIP and optionally a camera. For further information and technical recommendations, please refer to.
-
Tailor-made courses
-
You need a special course for your team? In addition to our standard offer, we will also support you in creating your customized courses, which precisely meet your individual demands. We will be glad to consult you and create an individual offer for you.
