The migration of the IP networks worldwide to the new standard IPv6 is in full swing. All network designers and administrators have to deal with this topic sooner or later. This seminar imparts comprehensive know-how about IPv6, from the header format over addressing issues to the options of application. After the course, the students will be familiar with the benefits and improvements offered by IPv6. They will be able to assess the effort required for a migration to IPv6 and the demands made on the parallel application of IPv4 and IPv6. Hands-on exercises and the application of IPv6 in the Internet via an IPv6-capable Internet access round off the topic.

Course Contents
- Aims of IPv6
- Application Fields of IPv6
- IPv6 Addressing and Address Types
- Modifications in the Header Format
- Auto-configuration with SLAAC and DHCPv6
- Routing of IPv6 with RIP, OSPF, IS-IS, BGP-4, and MPLS
- Migration Strategies from IPv4 to IPv6
- Tunneling of IPv6 over IPv4
- Interworking of IPv6 with IPv4 (NAT64)
- ISP Networks and IPv6
- Enterprise Networks and IPv6
- IPv6 and Mobile Communications
- Operating Systems and IPv6

During the course, the practical implementation of IPv6 will be performed in a test network.

E-Book
You will receive the comprehensive documentation package of the ExperTeach Networking series – printed documentation, e-book, and personalized PDF! As online participant, you will receive the e-book and the personalized PDF.

Target Group
This course addresses network specialists wishing to study the potential of IPv6 and the corresponding application scenarios. This course is also recommended for administrators who already have to struggle with the limitations of IPv4, as well as persons responsible for networks who want to prepare themselves for the future planning of IPv6 networks.

Prerequisites
A detailed know-how of IPv4 is necessary for a successful participation in the course. A good preparation for the course at hand is the attendance at the course TCP/IP.
IPv6 – Addressing, Routing, and IPv4 Interworking

Table of Contents

1 Motivation for IPv6
 1.1 Motivation for IPv6
 1.2 Development in the Internet
 1.2.1 IPv4 Address Space
 1.2.2 Size of the Routing Tables
 1.2.3 Efficiency
 1.2.4 Complexity due to Auxiliary Protocols
 1.3 Mobile Communications
 1.4 Internet
 1.5 The Internet of Things (IoT)
 1.6 Demands Made on the New IP
 1.7 Comparison of IPv4 and IPv6
 1.8 IPv6 Introduction
 1.9 The Introduction in Enterprise Networks
 1.10 Added Value for Corporate Networks
 1.11 Resistance against IPv6

2 Addressing with IPv6
 2.1 IPv6 Addresses
 2.2 Structure of IPv6 Addresses
 2.2.1 Generation of the Interface ID
 2.2.2 Privacy Extensions According to RFC 4941
 2.3 IPv6 Scopes of Validity
 2.4 Unicast Addresses
 2.5 Global Unicast Addresses
 2.6 Link-local Addresses
 2.7 Unique Local Addresses
 2.7.1 Advantages and Disadvantages of Private Addresses
 2.8 Multicast Addresses
 2.8.1 Known Multicast Addresses
 2.8.2 Solicited Node Multicast Address
 2.8.3 Prefix-based Multicast Addresses
 2.9 Anycast Addresses
 2.10 Further Address Types
 2.11 Assignment of IPv6 Prefixes
 2.11.1 Address Assignment IANA—LIRs
 2.11.2 Address Assignment RIRs—LIRs—Customers
 2.11.3 Control

3 The IPv6 Header
 3.1 The Header Format
 3.1.1 Version, Payload Length, and Hop Limit
 3.1.2 Traffic Class
 3.2 Flow Label
 3.2.1 RFC 6294: Route Caching and Load-sharing
 3.2.2 RFC 6294: Further Use of the Flow Label
 3.3 Extensions with the Next Header
 3.3.1 Extensions for the Routers
 3.3.2 Extensions for the End Systems
 3.3.3 Extension IPv6

4 Neighboring Processes
 4.1 ICMPv6
 4.2 ICMPv6 Messages
 4.2.1 Type 1: Destination Unreachable
 4.2.2 Type 2: Packet Too Big
 4.2.3 Type 3: Time Exceeded
 4.2.4 Type 4: Parameter Problem
 4.2.5 Type 128/129: Echo Request and Reply
 4.3 Neighbor Discovery
 4.4 Neighbor Unreachability Detection
 4.5 Duplicate Address Detection
 4.6 Router Discovery
 4.7 Multicast Listener Discovery (MLD)

5 Address Assignment with IPv6
 5.1 Address Assignment with IPv6
 5.2 Static Address Assignment
 5.3 Disable Router Advertisements?
 5.4 Dynamic Address Assignment
 5.5 Stateless Autoconfiguration (SLAAC)
 5.6 Processes during SLAAC
 5.6.1 IPv6 RDNSS Configuration
 5.7 DHCv6
 5.7.1 DHCv6—Variants
 5.7.2 Stateless DHCv6
 5.7.3 Stateful DHCv6
 5.7.4 Lifetime and Address Renewal
 5.7.5 DHCv6 Timing—without Server
 5.7.6 DHCv6—Client and Server Identifier (DUID)
 5.8 DHCv6 Relay Agent
 5.9 DHCv6 Prefix Delegation
 5.10 Choosing the Right Address Assignment
 5.11 IPv6 Address Design
 5.11.1 IPv6 Plan for a Campus Network
 5.11.2 Address Concept VLAN ID

6 IPv6 in Operation
 6.1 Parallel Operation of IPv6 and IPv4
 6.1.1 Advantages and Disadvantages of Dual Stack
 6.1.2 DNS Makes It Possible
 6.1.3 What is preferred?
 6.1.4 Happy Eyeballs
 6.2 Operating Systems and IPv6
 6.2.1 Microsoft
 6.2.2 Linux
 6.2.3 Mac OS X
 6.2.4 Android

7 The Migration in an Overview
 7.1 Migration Procedure
 7.1.1 Networks with Dual Stack Nodes
 7.1.2 Native IPv6 Networks
 7.2 Tunnel
 7.2.1 IPv6-in-IPv4 Tunneling
 7.2.2 Static Tunnels—6in4
 7.2.3 Tunnel Setup
 7.2.4 Routing through the Tunnel
 7.2.5 IPv6 in GRE
 7.2.6 Dynamic Tunnels—6to4
 7.2.7 Address Format of 6to4
 7.3 Migration Strategies
 7.3.1 Backbone First
 7.3.2 Edges First
 7.4 Planning the Migration
 7.4.1 Determining an Aim
 7.4.2 Analyzing the Current State
 7.4.3 Inventory and Analysis
 7.4.4 An IPv6 Test Environment
 7.4.5 Test Completion
 7.5 Migrating—but when?

A Lab Exercises
 A.1 Lab Exercises in the Course
 A.1.1 Lab Setup
 A.2 Exercises—Chapter 2
 A.3 Exercises—Chapter 3
 A.4 Exercises—Chapter 4
 A.5 Exercises—Chapter 5

B List of Abbreviations

ExperTeach GmbH
Waldstraße 94 • 63128 Dietzenbach • Telefon: +49 6074 4868-0 • Fax: +49 6074 4868-109
info@experteach.de • www.experteach.de